Mathematical Methods

Physics 204, Daniel A. Martens Yaverbaum, Max S. Bean JOHN JAY COLLEGE OF CRIMINAL JUSTICE, THE CUNY
I. VECTOR

MULTIPLICATION:
The problems below refer to the following vectors, all of which have equal magnitudes:

1. Put the following dot-products in order from greatest to smallest. Please give some explanation of your reasoning:
a. $\vec{A} \cdot \vec{B}$
b. $\vec{A} \cdot \vec{C}$
c. $\vec{B} \cdot \vec{C}$
d. $\vec{A} \cdot \vec{D}$
2. Put the following cross-products in order from greatest to smallest magnitude. Please give some explanation of your reasoning:
a. $\vec{A} \times \vec{B}$
b. $\vec{A} \times \vec{C}$
c. $\vec{A} \times \vec{D}$
d. $\vec{A} \times \vec{F}$
3. Assuming that all the vectors have magnitude 3, find the following (if the result is a vector, indicate the direction):
a. $\vec{A} \cdot \vec{F}$
b. $\vec{A} \cdot \vec{D}$
c. $\vec{A} \times \vec{F}$
d. $\vec{A} \times \vec{D}$
e. $\vec{F} \times \vec{D}$
f. $\vec{C} \cdot \vec{C}$
g. $\vec{C} \times \vec{C}$
4. Assuming that \vec{A} and \vec{B} are separated by an angle of 30°, and \vec{A} and \vec{C} are separated by an angle of 75°, find the following (if the result is a vector, indicate direction):
a. $\vec{A} \cdot \vec{B}$
b. $\vec{A} \cdot \vec{C}$
b. $\vec{A} \cdot \hat{C}$
b. $\widehat{D} \cdot \hat{C}$
c. $\vec{B} \cdot \vec{C}$
c. $\hat{F} \times \vec{C}$
d. $\vec{A} \times \vec{B}$
e. $\vec{B} \times \vec{A}$
f. $\vec{B} \times \vec{C}$

II. DERIVATIVES

A) Given $x=A \cos (\omega t)$, find:
i. $\frac{d x}{d t}=$
ii. $\frac{d^{2} x}{d t^{2}}=$
B) Is $x=A \cos (\omega t)$ a solution to $\frac{d^{2} x}{d t^{2}}=-\omega^{2} x$? Why or why not?
C) Is $x=A \cos (5 t)$ a solution to $\frac{d^{2} x}{d t^{2}}=-3 x$? Why or why not?
D) Given $x=A \cos (5 t)$, find:
i. $\quad \frac{d x}{d t}=$
ii. $\frac{d^{2} x}{d t^{2}}=$
E) Given $x=A \cos (\sqrt{k / m} \cdot t)$, find:
iii. $\frac{d x}{d t}=$
iv. $\frac{d^{2} x}{d t^{2}}=$
F) Given $x=A \cos (\omega t+3.5)$, find:
iii. $\frac{d x}{d t}=$
iv. $\frac{d^{2} x}{d t^{2}}=$
G) Is $x=A \cos (\omega t+3.5)$ a solution to $\frac{d^{2} x}{d t^{2}}=-\omega^{2} x$? Why or why not?
H) Given $x=e^{-\omega t}$, find:
i. $\frac{d x}{d t}=$
ii. $\frac{d^{2} x}{d t^{2}}=$
I) Is $x=e^{-\omega t}$ a solution to $\frac{d^{2} x}{d t^{2}}=-\omega^{2} x$? Why or why not?
J) Given $x=e^{i \omega t}(i \equiv \sqrt{-1})$, find:
i. $\quad \frac{d x}{d t}=$
ii. $\frac{d^{2} x}{d t^{2}}=$
K) Is $x=e^{i \omega t}$ a solution to $\frac{d^{2} x}{d t^{2}}=-\omega^{2} x$? Why or why not?

III. COSINE FUNCTIONS

A) Given $x=4 \cos (\pi t)$,
i. \quad At $t=0$, what will be the value of x ?
ii. Find two values of t for which $\mathrm{x}=0$.
iii. Find two values of t for which $\mathrm{x}=4$.
iv. Find a value of t for which $x=-4$.
v. Find a value of t for which $x=2$.
vi. What is the maximum possible value of x ?
B) Given $x=4 \cos \left(2 \pi t+\frac{\pi}{2}\right)$,
vii. When $t=0$, what is the value of x ?
viii. Find a value of t for which $\mathrm{x}=4$.
ix. Find a value of t for which $x=0$.

