
Mathematical Methods

Physics 204, Daniel A. Martens Yaverbaum, Max S. Bean John Jay College of Criminal Justice, The CUNY

I. VECTOR MULTIPLICATION:

The problems below refer to the following vectors, all of which have equal magnitudes:

- 1. Put the following dot-products in order from greatest to smallest. Please give some explanation of your reasoning:
 - a. $\vec{A} \cdot \vec{B}$ b. $\vec{A} \cdot \vec{C}$ c. $\vec{B} \cdot \vec{C}$ d. $\vec{A} \cdot \vec{D}$
- 2. Put the following cross-products in order from greatest to smallest magnitude. Please give some explanation of your reasoning:
 - a. $\vec{A} \times \vec{B}$ b. $\vec{A} \times \vec{C}$ c. $\vec{A} \times \vec{D}$ d. $\vec{A} \times \vec{F}$
- 3. Assuming that all the vectors have magnitude 3, find the following (if the result is a vector, indicate the direction):
 - a. $\vec{A} \cdot \vec{F}$ b. $\vec{A} \cdot \vec{D}$ c. $\vec{A} \times \vec{F}$ d. $\vec{A} \times \vec{D}$ e. $\vec{F} \times \vec{D}$ f. $\vec{C} \cdot \vec{C}$ g. $\vec{C} \times \vec{C}$
- 4. Assuming that \vec{A} and \vec{B} are separated by an angle of 30°, and \vec{A} and \vec{C} are separated by an angle of 75°, find the following (if the result is a vector, indicate direction):

a. $\vec{A} \cdot \vec{B}$ b. $\vec{A} \cdot \vec{C}$ c. $\vec{B} \cdot \vec{C}$	a.	$\vec{A} \cdot \vec{B}$	b. $\vec{A} \cdot \vec{C}$	c. $\vec{B} \cdot \vec{C}$
--	----	-------------------------	----------------------------	----------------------------

- d. $\vec{A} \times \vec{B}$ e. $\vec{B} \times \vec{A}$ f. $\vec{B} \times \vec{C}$
- b. $\vec{A} \cdot \hat{C}$ b. $\hat{D} \cdot \hat{C}$ c. $\hat{F} \times \vec{C}$

II. DERIVATIVES

A) Given $x = A \cos(\omega t)$, find:

i.
$$\frac{dx}{dt} =$$

ii. $\frac{d^2x}{dt^2} =$

B) Is $x = A\cos(\omega t)$ a solution to $\frac{d^2x}{dt^2} = -\omega^2 x$? Why or why not?

C) Is $x = A\cos(5t)$ a solution to $\frac{d^2x}{dt^2} = -3x$? Why or why not?

D) Given
$$x = A \cos(5t)$$
, find:

i.
$$\frac{dx}{dt} =$$

ii. $\frac{d^2x}{dt^2} =$

E) Given
$$x = A \cos(\sqrt{k/m} \cdot t)$$
, find:

iii.
$$\frac{dx}{dt} =$$

iv. $\frac{d^2x}{dt^2} =$

F) Given $x = A\cos(\omega t + 3.5)$, find:

iii.
$$\frac{dx}{dt} =$$

iv. $\frac{d^2x}{dt^2} =$

G) Is $x = A\cos(\omega t + 3.5)$ a solution to $\frac{d^2x}{dt^2} = -\omega^2 x$? Why or why not?

H) Given
$$x = e^{-\omega t}$$
, find:

i.
$$\frac{dx}{dt} =$$

ii. $\frac{d^2x}{dt^2} =$

I) Is
$$x = e^{-\omega t}$$
 a solution to $\frac{d^2 x}{dt^2} = -\omega^2 x$? Why or why not?

J) Given
$$x = e^{i\omega t}$$
 ($i \equiv \sqrt{-1}$), find:

i.
$$\frac{dx}{dt} =$$

ii. $\frac{d^2x}{dt^2} =$

K) Is $x = e^{i\omega t}$ a solution to $\frac{d^2x}{dt^2} = -\omega^2 x$? Why or why not?

III. COSINE FUNCTIONS

- A) Given $x = 4 \cos(\pi t)$,
 - i. At t = 0, what will be the value of x?
 - ii. Find two values of t for which x = 0.
 - iii. Find two values of t for which x = 4.
 - iv. Find a value of t for which x = -4.
 - v. Find a value of t for which x = 2.
 - vi. What is the maximum possible value of x?

B) Given
$$x = 4\cos\left(2\pi t + \frac{\pi}{2}\right)$$
,

vii. When t = 0, what is the value of x?

viii. Find a value of t for which x = 4.

ix. Find a value of t for which x = 0.