
  glider 

Irregularities in the alignment 
of the rubber-band will cause 
slight variations in the initial 
speed of the glider. 

                                       

Variations in the air flow to the 
track will cause slight differences in 
the friction coefficient, which will 
affect the average speed. 

There is an unpredictable 
gap between when the 
glider reaches the end of 
the track and when the 
researcher clicks the 
stopwatch. 

Slight variation in the 
placement of the ruler 
will lead errors in the 
measured length of the 
track. 

But even if you were a robot and never made errors in the placement of 
your ruler or the timing of your stopwatch click, there would still be tiny 
defects in your ruler and stopwatch themselves. After all, no device is 
perfect. 

Systematic Uncertainty 
Max Bean 

John Jay College of Criminal Justice, Physics Program  
 
When we perform an experiment, there are several reasons why the data we collect will tend to differ from 
the actual values we are trying to measure. Say, for example, that you’re measuring the average speed of a 
glider moving down an air-track. You will have at least three types of RANDOM variation: 
 
 
Random variation in 
the actual thing you’re 
trying to measure: 
 
 
 
 
 
 
 
 

Random human 
measurement error: 
  
  
 
 
 

Random defects in 
your measurement 
devices: 
 
  
 
 
THE BAD NEWS: because these types of error are RANDOM, they are very difficult to quantify. You can 
never say exactly how big the effects of random errors are. Statistics allows us to say things about the 
PROBABILITY that these error effects are a given size, but it can never say anything with 100% certainty. 
 
THE GOOD NEWS: the fact that these errors are RANDOM means that we can reduce their effect by 
AVERAGING MULTIPLE TRIALS. Again, we can never eliminate them completely, but the more trials we 
run, the smaller they get. We can also do cool stuff with scatter plots to help us deal with random variation; 
we’ll do some of that later on. 
 
THE OTHER GOOD NEWS: in this course, we are not really that interested in RANDOM errors, and 
you are NOT REQUIRED TO ESTIMATE THEIR EFFECTS in your lab reports (which is good news for 
you, because statistics is a pain). What we are definitely interested in is something called SYSTEMATIC 
UNCERTAINTY, and you will definitely have to estimate the effect of this in your lab reports. 
 



Systematic uncertainty is a QUANTIFIABLE uncertainty caused by the very nature of measurement. Let’s go 
back to our glider example. Imagine for a moment that the glider & the track are perfect: the glider always 
goes down the track at EXACTLY the same speed. (That’s impossible in the real world, of course, but in 
physics we deal with an imaginary perfect world that’s similar to the real world, but not the same.) Imagine, also, 
that you are a perfect robot researcher: you always click the stop watch at the EXACT MOMENT that the 
glider reaches the end of the track; you always line up your ruler PERFECTLY with the end of the glider; etc. 
(Also impossible.) Finally, imagine that you have perfect measurement devices with no defects. (Impossible 
again.) Even in this imaginary, perfect scenario, there would  STILL be uncertainty in your data. Here’s why: 
 
Say you use your perfect robot hand to line up the meter-stick perfectly, and with your perfect robot eyes, you 
see that the distance from the end of the glider to the end of the track comes to 572 mm. But wait: is the 
track really a perfectly whole number of millimeters long? Isn’t it really a few fractions of a millimeter over or 
under? It’s not that your meter-stick is defective; it’s just that it doesn’t have fine enough gradations. Of 
course, we could get a special measuring device with microscopic gradations & read it using a magnifying 
glass or lasers or something, but whatever device we use MUST have a SMALLEST UNIT, and 
VARIATIONS SMALLER THAN THAT UNIT WILL BE & SHOULD BE UNDETECTABLE. 
 

This is NOT an ERROR; it is an intrinsic part of what it means to 
measure things; it is a SYSTEMATIC UNCERTAINTY. When we 
measure things, we don’t get VALUES, we get RANGES OF VALUES. 
 

When we measure the glider track with our meter-stick and say that it’s 572 mm long, we don’t mean that it’s 
EXACTLY 572 mm; we mean it’s CLOSER to 572 mm than it is to 571 mm or 573 mm. In other words, it’s 
between 571.5 and 572.5; we write it like this: 572 mm ±0.5 mm. IN GENERAL: a measurement taken on a 
measuring device is DEFINED to be off by up to one half of the smallest unit captured by the measuring 
device. If we’re measuring with a ruler whose smallest units are eights of an inch, our uncertainty will be ± 

half of an eighth of an inch, i.e. ± 
!
!"

 inch. This ± value is called the ABSOLUTE UNCERTAINTY 

INTERVAL, but we will mostly refer to it as simply the uncertainty interval in this packet. Notice that the 
absolute uncertainty interval HAS ITS OWN UNITS. 
 
(One quick side note: you have to be careful with digital measuring devices like stopwatches. Ignoring 
hundredths of a second, a stopwatch typically shows 0:00 until the very end of the 1st second, then shows 
0:01 until the end of the 2nd second, and so on. So, when your stopwatch is showing 0:25, that means that it 
has been running for anywhere from 25 to just under 26 seconds. Therefore, we should record our 
measurement as 25.5 seconds ± 0.5 seconds.) 
 
That’s all you need to know about uncertainty for RAW DATA, i.e. MEASURED QUANTITIES. But once 
you’ve collected your raw data, you’ll have to ANALYZE it by adding, subtracting, multiplying, & dividing 
measurements, in order to obtain ANALYZED QUANTITIES, which will have their own uncertainty 
intervals. The rest of this packet is about how to figure out the uncertainty intervals of analyzed quantities. 
Everything in this packet is based on The Basic Question Regarding Uncertainty Intervals, which is…  
 

“What are the maximum and minimum possible values of the quantity?” 
 

In our meter-stick example above, the MAXIMUM POSSIBLE VALUE was 572.5 mm. The MINIMUM 
POSSIBLE VALUE was 271.5 mm. Note what we’re NOT asking here: we’re NOT asking which value or 
range of values is most PROBABLE. We’re only interested in what’s POSSIBLE. This is good news, because, 
among other things, it makes the math much simpler.  



Mathematical Methods for Calculating Uncertainty Intervals 
 
What follows are four different methods for calculating uncertainty intervals in different situations. We will 
provide the specific mathematical procedures for each case, and we’ll explain those procedures, but there’s 
nothing magical happening with these procedures; they all come naturally from the central question regarding 
uncertainty intervals: What are the maximum & minimum possible values? 
 
 
Method #1: Multiplying & Dividing by a Dimensionless Number 
 
Sometimes, we have to divide our data by a dimensionless number (i.e. a 
number without units). For example, say we are trying to measure the 
period of a pendulum (see box at right). The period is pretty short—less 
than one second—so instead of trying to measure a single trip back and 
forth, we count off 20 trips back and forth and time that. Then we divide 
our result by 20 to get the length of one period. In this case, 20 is a 
DIMENSIONLESS NUMBER. It does not correspond to any 
measurement. It has no uncertainty of its own and no units. 
 

When dividing by a dimensionless number, divide the uncertainty range by the same number. 
When multiplying by a dimensionless number, multiply the uncertainty range by the same number. 

 

Example 1.A: In the pendulum example above, say we measured the length of 20 periods of our 
pendulum to be 15 seconds ± 0.5 seconds. We then divide by 20 to get the length of one cycle, and we 
get 0.75 seconds. We also divide our uncertainty range by 20: ± 0.5/20 = ±0.025. So our measurement 
for the length of one cycle would be 0.75 seconds ± 0.025 seconds. 
 
Example 1.B: Say we’re doing an experiment with Legos. We measure the height of a leg and find that 
it’s 18mm ±0.5mm. Now we want to calculate the height of a tower that 50 Legos high. We multiply the 
height and get 18mm × 50 = 900mm. We multiply the uncertainty and get ±0.5mm × 50 = ±25mm.  So 
our result is 900mm ±25mm. 

 
One thing we can notice immediately from these examples is that measuring a larger quantity and dividing 
reduces uncertainty, while measuring a smaller quantity and multiplying increases uncertainty. You will want 
to keep this in mind when designing experimental procedures. 
 
 Proof of Method 1 
 

You may think that Method 1 is so straightforward that it needs no proof. It’s true that this method is 
very intuitive, but in some of the other methods in this packet some very un-intuitive things are going to 
happen (but you’ll be able to see why), so the mathematically curious student may want to know how we 
can be so sure that what happens in Method 1 is so straightforward and intuitive. Here’s the proof, for 
those who are curious: 

 
Remember that, when developing our methods for operating on uncertainties, we’re always interested in 
one basic question: “What are the maximum & minimum possible values of the quantity?”  

 
With that in mind, let’s begin with an example. In Example #1 above, we measured the duration of 20 
periods on our pendulum and found that they took 15 seconds ± 0.5 seconds altogether. The maximum 

The period of a 
pendulum is the 
length of time 
required for the 
pendulum to 
complete one 
trip back and 
forth.  



possible value of the measured quantity is 15.5 seconds. The minimum possible value of the 
measured quantity is 14.5 seconds. We divide each of these by 20: 

15.5/20 = 0.775 = Maximum possible length of one period 
14.5/20 = 0.725 = Minimum possible length of one period 

 So, our calculated value for the period of our pendulum is 0.75 ± 0.025 
 

Now, here’s the true algebraic proof, with variables. Given: a measured value m with an uncertainty 
interval u, and a dimensionless number k, find the uncertainty interval of (m/k) and (m × k). The 
maximum possible value of the quantity is (m + u). The minimum possible value is (m – u). So, we have 

Maximum value of quantity divided by 𝑘 = !!!
!

= !
!
+ !

!
 

Minimum value of quantity divided by 𝑘 = !!!
!

= !
!
− !

!
 

Maximum value of quantity multiplied by 𝑘 = 𝑘 𝑚 + 𝑢 = 𝑘𝑚 + 𝑘𝑢 

Minimum value of quantity multiplied by 𝑘 = 𝑘 𝑚 − 𝑢 = 𝑘𝑚 − 𝑘𝑢 

 Thus, m/k has an uncertainty interval of ± u/k, 
 and km has an uncertainty interval of ± ku 
 
 
Method #2: Adding & Subtracting Measurements 
 
Say that we know the total length of the air track in our glider lab and we know the length of our glider. We 
can find the distance traveled by the glider by subtracting the glider length from the track length. Or say we 
now want to know the mass of the glider with a lab rat riding on top of it. We know the mass of the glider 
and we know the mass of the rat, so we just add them to find their combined mass. 
 
In these cases, we are adding or subtracting two measured values, each of which will have its own error 
interval. One thing to notice in passing: if you are adding or subtracting measured values (unlike when you’re 
multiplying and dividing), THEY MUST BE IN THE SAME UNITS. This means that they were probably 
gathered using the same measuring device, which means they ought to have THE SAME UNCERTAINTY 
INTERVAL. (This is also why you will never have to add or subtract a dimensionless number to/from a 
quantity.) 
 
So, here are the rules: 
 

When ADDING measured quantities, you ADD the uncertainty intervals. 
When SUBTRACTING measured quantities, you still ADD the uncertainty intervals. 

 

Example #2.A: In the glider-riding lab rat example, above, say we find that: 
 Mass of glider = 0.148 kg ± 0.0005 kg. 
 Mass of lab rat = 34g ± 0.5g—or 0.034 kg ± 0.0005 kg.  
If we add these to find the total mass of the glider with the rat riding on it, we get: 
 (0.148 kg + 0.034 kg) ± (0.0005 kg + 0.0005 kg) = 0.182 kg ± 0.001 kg 

 

Example #2.B: Say we found that:  
 our air track is 684 mm ± 0.5 mm long and  
 our glider is 112mm ± 0.5 mm long.  
If we subtract these to find the distance traveled by the glider, we get:  
 (684mm – 112mm) ± (0.5mm + 0.5mm) = 572mm ± 1.0mm 



The first rule for method 2 (the rule for addition) is pretty intuitive. The second rule (the rule for subtraction) 
is not. To see why it works, we’ll go back to (you guessed it!) our basic question about uncertainty intervals: 
what are the maximum and minimum possible values of the quantity? 
 
In example 2B above, we have: 

length of air track: 𝐿! = 684 mm ± 0.5 mm; so 𝐿! maximum = 684.5 mm and 𝐿! minimum = 683.5 mm  
length of glider: 𝐿! = 112 mm ± 0.5 mm; so 𝐿! maximum = 112.5 mm and 𝐿! minimum = 111.5 mm 

The MAXIMUM POSSIBLE VALUE of 𝐿! − 𝐿! will be when 𝐿!  is BIG and 𝐿! is SMALL. Thus, 

 𝐿! − 𝐿!  maximum =   684.5  mm − 111.5  mm = 573  mm 

The MINIMUM POSSIBLE VALUE of  𝐿! − 𝐿! will be when 𝐿!  is SMALL and 𝐿! is BIG. Thus, 

 𝐿! − 𝐿!  minimum =   683.5  mm − 112.5  mm = 571  mm 

So, 𝐿! − 𝐿! can be anywhere from 571 mm to 573 mm, i.e. 572 mm ± 1 mm 
Because both quantities could be off in either direction, the total uncertainty of the difference is the sum of 
the uncertainties. 
 
Notice that, because of this pair of rules,  
• measuring a difference directly creates lower uncertainty than measuring two quantities and subtracting; and  
• measuring a combined quantity directly creates lower uncertainty than measuring two quantities & adding 

them.  
 
BUT these effects are small and may be offset by error factors; for example, it may be easier to line up the 
meter stick precisely to measure the length of the glider and the length of the track than it is to line it up to 
directly measure the length of the distance from the end of the glider to the end of the track.  
 
When designing experimental methods, you should take into consideration BOTH factors that 
increase/decrease uncertainty AND factors that tend to increase/decrease error. 
 
 
Method #3: Averaging Multiple Trials 
 
One interesting result of thinking about UNCERTAINTY instead of ERROR and worrying about 
POSSIBLITY instead of PROBABILITY is that AVERAGING MULTIPLE TRIALS DOES NOT 
REDUCE UNCERTAINTY.  
 
(But, as we saw in method #1, measuring a larger quantity and dividing does reduce uncertainty.) Instead, 
 

When averaging multiple trials, you average the uncertainty interval from each trial. 
 

Example 3.A: Say I’m measuring the speed of my glider; I perform 3 trials, and get the following 
readings for the gilder’s time: 13 s ± 0.5 s, 14 s ± 0.5 s, and 12 s ± 0.5 s. When I average these, I will get: 

(13 + 14 + 12)/3 s ± (0.5 + 0.5 + 0.5)/3 s = 13 s ± 0.5 s. 
 
Note that, in the above example, because the things we were averaging were all the same kind of 
measurement, their uncertainty intervals were all the same, so averaging them left them the same. This will 
often be the case—but NOT ALWAYS. It will NOT be the case if the things we are averaging are calculated 
values, like velocity, that require multiplying or dividing. 
 
 



Method #4: Multiplying & Dividing Measurements 
 
In the glider lab that we’ve been discussing throughout this packet, we’re ultimately trying to calculate the 
average speed of the glider. Average Speed = Distance/Time, so we’re going to have divide our distance (a 
measured quantity) by our time (another measured quantity). Note that this is completely different from 
dividing by a dimensionless number: time has units and an uncertainty interval of its own. To take another 
example, if we were calculating an area or a volume, we would have to multiply two or three measured 
distances together, each of which would have units and uncertainty intervals.  
 
The method for calculating uncertainty intervals for these operations is more complicated than the others, 
and it can’t be put in a quick, one-line rule—but don’t worry, it’s not that hard. Just remember our basic 
question about uncertainty intervals: what are the maximum and minimum possible values of the quantity? 
 
Ok, with this in mind, notice the following: 

In multiplication, BIGGER×BIGGER=BIGGEST and SMALLER×SMALLER=SMALLEST 
In division, BIGGER/SMALLER=BIGGEST and SMALLER/BIGGER=SMALLEST 

 
Think about that for a moment and make sure it makes sense. Then we’ll do some examples. 
 

Example 4.A: Say we measured our glider’s distance to be 571 mm ± 0.5 mm, and we measured its time 
to be 13.5 s ± 0.5 s. So, the maximum possible value for the speed will be 

MAX DISTANCE/MIN TIME = 571.5mm/13s ≈ 44.0 mm/s 
And the minimum possible value for the speed will be 

MIN DISTANCE/MAX TIME = 570.5mm/14s ≈ 40.8 mm/s 
Also, if we calculate the speed ignoring uncertainty, we get 

572/13.5 =42.3 mm/s 
 

Example 4.B: Say we are calculating the volume of a water tank, and we take the following 
measurements: height = 40 mm ± 0.5, length = 50 mm ± 0.5, and width = 30 mm ± 0.5. So, the 
maximum possible value for volume will be 

MAX H × MAX L × MAX W = 40.5 mm × 50.5 mm × 30.5 mm = 62,380.125 mm3 

And the minimum possible value for volume will be: 
MIN H × MIN L × MIN W = 39.5 mm × 49.5 mm × 29.5 mm = 57,679.875 mm3 

Also, if we calculate the speed ignoring uncertainty, we get 
40 mm × 50 mm × 30 mm = 60,000.00 mm3 

 
Note that, in both examples above, our calculated value is not exactly in the middle of our uncertainty 
interval! This is an ASYMMETRICAL UNCERTAINTY INTERVAL, and it is a standard feature of our 
method for division and multiplication. There are three ways you can express it: 
  

1. Simply provide the uncertainty interval with no specific data point:  
 Average speed of glider is between 40.8 mm/s and 44.0 m/s 

2. Present your calculated data point along with the asymmetric uncertainty interval: 
 Average speed of glider = 42.3 mm/s, (Min: 40.8 m/s, Max: 44.0 m/s) 

3. Calculate the midpoint of the new uncertainty interval and use this as your data point: 
 Average speed of glider = 42.4 mm/s ± 1.6 mm/s 
 

Any of these three formats is ok—in terms of scientific practice & in terms of the grade on your lab report—
but DO please THINK about the advantages of each BEFORE selecting one. 



Uncertainty Interval Calculation – a Side-by-Side Comparison 
 
What we have presented in this packet is the new Absolute Uncertainty Method for calculating uncertainty 
intervals. Previously, JJay physics classes have used the Fractional Uncertainty Method. You are welcome 
to use either one in your lab reports. We’re not going to go into detail about how the Fractional Uncertainty 
Method works, but you can find a quick overview of it in this side-by-side comparison of the two methods. 
 

The Fractional Uncertainty Method The Absolute Uncertainty Method 

Before You Begin To Analyze Your Data… 

After collecting raw data, convert each uncertainty 
interval to a fractional uncertainty (FU) by dividing it 
by the measured value: 
 
Examples A: Given 45m ± 0.5m 

FU = 0.5m/45m = 0.011 or 1.1% 
 
Example B : Given 28s ± 0.5s  

FU = 0.5s/28s = 0.018 or 1.8% 
 
(Notice that fractional uncertainty has NO UNITS!) 
 
Now you’re ready to analyze your data… 
 

For the Absolute Uncertainty Method, you do not 
need to do any conversion before you begin to analyze 
your data. Your raw data comes with an absolute 
uncertainty interval (e.g. ± 0.5m or ± 0.0005kg) and 
you will use this interval to calculate all the uncertainty 
intervals for your analyzed quantities. 

When Multiplying/Dividing by a Dimensionless Number… 

Fractional uncertainty remains unchanged 
 

Example A:   
45m (FU=0.011) × 10 = 450m (FU=0.011) 

 

Multiply/divide the absolute uncertainty interval by the 
same number. 
 
Example A: (45m ± 0.5m) × 10 = 450m ± 5m 
Example B: (45g ± 0.5g) / 10 = 4.5g ± 0.05g 
 

When Adding/Subtracting Measured Quantities… 

Use the largest fractional uncertainty from among the 
quantities that you are adding/subtracting. 
 
Example:  

23s (FU=0.014) + 31s (FU=0.012) = 54 (FU=?) 
Use the larger fractional uncertainty: 0.014 
Sum = 54s (FU=0.014) 
 

Add the absolute uncertainty intervals. 
 
Example A: (9s ± 0.5s) + (11s ± 0.5s) = 20s ± 1s 
Example B: (30cm ± 0.5cm) – (16cm ± 0.5cm) = 

14cm ± 1cm 
 

When Averaging Multiple Trials… 

Use the largest fractional uncertainty from among the 
quantities that you are averaging: 
 
Example:  

Given three trials: 20s (FU=0.020), 25s 
(FU=0.018) = 30 (FU=0.017) 
Use the larger fractional uncertainty: 0.020 
Average =  25s (FU=0.020) 
 

Average the uncertainty intervals… 
 
Example:  

Given three trials: 20s ± 0.5s, 25s ± 0.5s, 30s ± 0.5s 
Average = 25s ± 0.5s 

 



When Multiplying/Dividing Measured Quantities… 

Add the fractional uncertainties 
 
Example A:  

60mm (FU=0.008) × 70mm (FU=0.02) =  
4200mm (FU=0.028) 

 
Example B:  

23mm (FU=0.014) / 7s (FU=0.025) =  
3.3mm/s (FU=0.039) 

 

Find the max possible values: big×big & big/small  
Find the min possible values: small×small & small/big 
 
Example A:  

Given 20m ± 0.5m × 11m ± 0.5m: 
Max Val = 20.5×11.5 = 235.75 
Min Val = 19.5×10.5 = 204.75 
 

Example B:  
Given 34m ± 0.5m / 4s ± 0.5s: 
Max Val = 34.5/3.5 = 9.86 
Min Val = 33.5/4.5 = 7.44 

When You Have Completed Your Analysis and Found Your Final Quantities… 

You must convert the fractional uncertainties back 
into absolute uncertainties for all outcome 
variables—i.e. quantities that you will discuss in your 
CONCLUSION. (But any variables that you will NOT 
discuss in your conclusion can be left with fractional 
uncertainties.) To do this, multiply the fractional 
uncertainty by the quantity it’s associated with: 

 
Example:  60g (FU=0.011) à 60g ± (60g×0.011) =  

60g ± 0.66g 

You’re all done! Report the absolute uncertainty 
intervals that you calculated for each of your outcome 
variables. 

 

 
 
Now that you’ve seen both methods, here are some practice problems. You can use EITHER 
METHOD to complete these. 
 
You are trying to determine the density of a solid cylinder made of unknown material. You measure the 
cylinder and discover that it has a diameter of 25 mm ± 0.5 mm and a length of 45 mm ± 0.5 mm.  
 

a) Use the formula 𝑉 = 𝜋𝑟!ℎ to determine the volume of the cylinder.  
 

b) Calculate the ABSOLUTE UNCERTAINTY associated with the volume of the cylinder.  
Hint #1: note that � is a dimensionless number.  
Hint #2: note that when you square r, you are multiplying r (a measured quantity) by r (a measured 
quantity). 
 

c) You weigh the cylinder and discover that it has a mass of 79.422 kg ± 0.0005 kg. Use the formula 
𝜌 = 𝑀/𝑉 (where 𝜌 is density, M is mass, and V is volume) to find the density of the cylinder. 
 

d) Calculate the ABSOLUTE UNCERTAINTY associated with the density of the cylinder. 
 
 

And now, a conceptual question: why does it make sense that fractional uncertainty has no units? 


