$$
\begin{gathered}
\text { Board Meeting Alpha: } \\
\text { (a) Unpacking UNCERTAINTY } \\
\& \\
\text { (b) The S.H.O.Dif. Eq. } \\
\text { with respect to } \\
\text { THETA }
\end{gathered}
$$

Physics 204: Daniel A. Martens Yaverbaum John Jay College of Criminal Justice, the CUNY

I. Board Meeting PROCEDURES.

Make certain to read ALL procedures before beginning to follow any of them.
A) Take at least one large white board for each 8 roup.

With as much clarity, completeness, color, vivacity and verity as possible,
On סroup white boards, respond to all the PROBLEMS:
Do not merely solve;
PRESENT, DEPICT \& ILLUSTRATE your MENTAL SENSE ("Model") of the situation and how it unfolds in your mind-

Assume you are explaining and/or defending a point of view.
You may certainly use more than one white board per 8 roup.
B) Leave AT LEAST 45 minutes to 1 hour for the followin $8:$

Gather in an approximate circle, all Boards facin8 in.
Discuss the Boards with respect to and for any leadin 8 questions posed by the Instructor.

The Instructor, however, will play a noticeably minimal role. Whenever s/he is silent and whenever you wonder what to discuss, do the followin8:
i. Be 8 in by attempting to identify and reconcile disa 8 reements amon 8 boards,
ii. Freely but respectfully follow whatever conceptual/conversation paths emerge from the attempt to reconcile boards.
iii. Emphasize Depth over Breadth:

Once the class discovers that it is disagreement or confusion over a particular and fundamental point-~
whether or not this point was originally intended for discussion~~
STICK WITH THE CONCEPT PAST THE POINT OF FRUSTRATION ס SEEMING 'CIRCLES'.
iv. Do not interrupt colleagues.
v. Assumin 8 you follow all the fore8oin 8 with ri8or and respect, do not submit a lab report.

II. Exemplifyin§ Exercise: UNCERTAINTY

(1) A Europaen Blood Droplet (30 pts).

IN ORDER TO FOCUS ON UNCERTAINTY IMPLICATIONS, YOU MUST AT LEAST COMPLETE PARTS
(a) and (h).

It is the year 2034. You are the Chief Medical Examiner...
...in a thrivin8 city on one of Jupiter's moons.

Blood has been spattered from a body, but the body has been removed.
One drop of blood has evidently fallen past the entire length of a smellovision set.
The smellovision set is $2,400.0 \mathrm{~cm}(+/ \sim .05 \mathrm{~cm})^{*} \mathrm{~cm}$ from top to bottom.
A local criminolosist has concluded that the drop of blood took 6.00 seconds $(+/ \sim .005$ seconds)* to fall past the smellovision set.

The drop of blood had evidently fallen from some unknown height above the top of the smellovision set. Wherever it fell from, it was initially stationary.

On this moon of Jupiter, gravity works exactly the way it does on Earth: It produces a constant acceleration.

The constant acceleration magnitude, however, is NOT $1000 \mathrm{~cm} / \mathrm{s}^{2}$. It is some other unknown number.
a) What was the drop's average velocity past the smellovision set?
b) Determine the time at which the drop's instantaneous velocity was precisely 400 cm / s : Was it, for example, $t=1 \mathrm{sec}$? $t=3.7 \mathrm{sec}$? When?

At the BOTTOM of the smellovision set, a photo8ate measures the drop's instantaneous velocity to be $550 \mathrm{~cm} / \mathrm{s}$.)
c) What is the constant acceleration due to 8 ravity on this moon of Jupiter?
d) What was the drop's instantaneous velocity at the top of the smellovision?
e) What was the drop's instantaneous acceleration as it passed the midpoint of the smellovision?
f) From how hish above the smellovision did the drop come?
8) Draw a roush but Neat and Clear a vs. T 8raph of the drop's motion from $\mathrm{t}=0$ to $\mathrm{t}=4$ seconds-the entire time interval for the smellovision.

Use the Y AXIS for instantaneous ACCELERATION and use the X-AXIS for TIME (5 pts).

Make sure to LABEL YOUR AXES and LABEL ATLEAST ONE REPRESENTATIVE VALUE ONEACH AXIS.
h) Refer to your answer for the drop's average velocity past the window (part [a]). An expert witness claims that if certain conditions are true, this victim's blood MUST have traveled at an average velocity of $399 \mathrm{~cm} / \mathrm{sec}$.
Given the measurement disits and uncertainties provided in the fact pattern, explain why your analyzed velocity IS or IS NOT consistent with this expert witness's prediction. Show all work. NOTE: This is the one and only part of this question where you are actually bein 8 asked to perform an analysis of uncertainties.

III. Application and ANALYSIS: Oscillatin8 alon8 an ARC.

Assume a planar, small-an\&le pendulum of len 8 th L.
Assume that the free-fall acceleration due to 8 ravity near Earth's surface is 8 .
The instructions below should be familiar. You are free

EITHER

To follow them step-by-step ('climb the trees') - and thereby fully DERIVE answers to the boxed research questions

OR
To trust your 8 rowing understanding of the larger picture ('consider the forest') and thereby fully DERIVE answers to the boxed research questions
(1) What is the $2^{\text {nd }}$ Order Differential Equation that describes the relationship between

ANGULAR ACCELERATION $\left(\frac{d^{2} \theta}{d t^{2}}\right)$ and
ANGULAR DISPLACEMENT from equilibrium ($\boldsymbol{\theta}$)
for a planar, small-angle pendulum?
(2) Given $\mathcal{\delta}$ and given the Dif. Eq. derived in (a), above,

What is the PERIOD (T) ~
as a function of Length (L) ~
for such a pendulum?

DRIVII
DRIW! .o.

Draw a "Pure" Free-Body-Diagram of the pendulum bob at one arbitrary point in its swingdisplaced from the vertical by an angle Theta.
a. Since the pendulum bob swings in the arc of a CIRCLE, analyze these forces through a coordinate system most convenient for circles: Break up any and all off-axis vectors into components so that every force component lies along either a Radial (Centripetal) Axis, a Tangential Axis or a " Z " Axis (" Z " being perpendicular to the plane of the circle). Draw a "Component" Free-Body Diagram according to this coordinate system.
b. Write down Newton's $2^{\text {nd }}$ Law and apply to each axis separately.
c. Focus on your Newton's Law statement for the axis along which MOTION (VELOCITY) occurs: The tangential axis. Recognize that the acceleration along this axis here is not yet "known", but is, by definition, the second derivative of position with respect to time. Make this substitution in your Newton's Law statement. Note that along this axis, positions advance (change) along the arc length of the circle. Assume that the direction AWAY from the vertical is reckoned POSITIVE. Anything pointing TOWARD the vertical should get a negative sign.
d. Recall the definition of any angle MEASURED IN RADIANS is the ratio of arc length to radius (B2). Using this definition, re-write your Newton's Law statement so that each side of the equality is a function of nothing more than time, the angle theta, the string length and the acceleration due to gravity.
e. Recall that as long as we MEASURE IN RADIANS, the sine of an angle approaches the angle itself as the angle gets closer and closer to 0 . Assume that the angles under discussion and observation are extremely small, re-write your Newton's $2^{\text {nd }}$ Law statement as an approximate equality for small angles - one that makes reference only to angles themselves, no trigonometric functions.
f. You now should have a second-order differential equation for which time is the independent variable, angle is the dependent variable and the two constants are length and free-fall acceleration. Clearly write down this differential equation.
g. In at least three three complete sentences of English, explain why this differential equation demands that the pendulum motion SHOULD approximate simple harmonic oscillation under certain conditions. Under what condition will the oscillation start to drift away from simple harmonic?
h. Use your differential equation to derive :
i. The angular frequency of the pendulum (in terms of \boldsymbol{l} and \boldsymbol{g}),
ii. The standard frequency of the pendulum (in terms of \boldsymbol{l} and \boldsymbol{g}),

The PERIOD of the pendulum (in terms of \boldsymbol{l} and \boldsymbol{g}).

